An Infeasible Active Set Method with Combinatorial Line Search for Convex Quadratic Problems with Bound Constraints∗

نویسندگان

  • Philipp Hungerländer
  • Franz Rendl
چکیده

The minimization of a convex quadratic function under bound constraints is a fundamental building block for solving more complicated optimization problems. The active-set method introduced by Bergounioux et al. [1, 2] has turned out to be a powerful, fast and competitive approach for this problem. Hintermüller et al. [15] provide a theoretical explanation of its efficiency by interpreting it as a semismooth Newton method. One major drawback of this method lies in the fact that it is not globally convergent for all classes of convex quadratic objectives. Several modifications were introduced recently, that ensure global convergence. In this paper we introduce yet another modified version of this active set method, which aims at maintaining the combinatorial flavour of the original semismooth Newton method. We prove global convergence for our modified version and show it to be competitive on a variety of difficult classes of test problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Feasible Active Set Method for Strictly Convex Quadratic Problems with Simple Bounds

A primal-dual active set method for quadratic problems with bound constraints is presented which extends the infeasible active set approach of Kunisch and Rendl [17]. Based on a guess of the active set, a primal-dual pair (x,α) is computed that satisfies stationarity and the complementary condition. If x is not feasible, the variables connected to the infeasibilities are added to the active set...

متن کامل

Active Set Methods with Reoptimization for Convex Quadratic Integer Programming

We present a fast branch-and-bound algorithm for solving convex quadratic integer programs with few linear constraints. In each node, we solve the dual problem of the continuous relaxation using an infeasible active set method proposed by Kunisch and Rendl [11] to get a lower bound; this active set algorithm is well suited for reoptimization. Our algorithm generalizes a branch-and-bound approac...

متن کامل

Global convergence of an inexact interior-point method for convex quadratic‎ ‎symmetric cone programming‎

‎In this paper‎, ‎we propose a feasible interior-point method for‎ ‎convex quadratic programming over symmetric cones‎. ‎The proposed algorithm relaxes the‎ ‎accuracy requirements in the solution of the Newton equation system‎, ‎by using an inexact Newton direction‎. ‎Furthermore‎, ‎we obtain an‎ ‎acceptable level of error in the inexact algorithm on convex‎ ‎quadratic symmetric cone programmin...

متن کامل

A Feasible Active Set Method with Reoptimization for Convex Quadratic Mixed-Integer Programming

We propose a feasible active set method for convex quadratic programming problems with non-negativity constraints. This method is specifically designed to be embedded into a branch-and-bound algorithm for convex quadratic mixed integer programming problems. The branch-and-bound algorithm generalizes the approach for unconstrained convex quadratic integer programming proposed by Buchheim, Caprar...

متن کامل

An Interior Point Algorithm for Solving Convex Quadratic Semidefinite Optimization Problems Using a New Kernel Function

In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) fun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017